Mouse Macrophages (MMa-bm)
Catalog #M1920-57

Cell Specification
Macrophages are cells differentiated from circulating bone marrow-derived monocytes. In the bone marrow and subsequently in the blood and tissues, monocytes undergo a cascade of maturation that culminate in morphologically and functionally mature tissue macrophages [1]. The main function of macrophages is to remove cellular debris and destroy invading pathogens. They phagocytize invading microorganisms, and scavenge dead, damaged cells and cellular debris. Macrophages can be identified by the specific expression of several cell surface proteins including CD14, CD11b, F4/80 (mice)/EMR1 (human), MAC-1/MAC-3, and CD68 by flow cytometry or immunohistochemical staining [2].

MMa-bm from ScienCell Research Laboratories are isolated from adult C57BL/6 mouse bone marrow. MMa-bm are harvested at P0 and delivered frozen. Each vial contains >1 x 10^6 cells in 1 ml volume. MMa-bm are characterized by immunofluorescence with antibody specific to CD11b and F4/80. MMa-bm are negative for mycoplasma, bacteria, yeast, and fungi. MMa-bm are guaranteed to further culture under the conditions provided by ScienCell Research Laboratories; however, MMa-bm are not recommended for expanding or long-term cultures since the cells do not proliferate in regular culture.

Recommended Medium
It is recommended to use Macrophage Medium (MaM, Cat. #1921) for culturing MMa-bm in vitro.

Product Use
MMa-bm are for research use only. They are not approved for human or animal use, or for application in in vitro diagnostic procedures.

Storage
Upon receiving, directly and immediately transfer the cells from dry ice to liquid nitrogen and keep the cells in liquid nitrogen until they are needed for experiments.

Shipping
Dry ice.

References
Instructions for culturing cells

Caution: Cryopreserved cells are very delicate. Thaw the vial in a 37°C water bath and return the cells to culture as quickly as possible with minimal handling!

Note: Experiments should be well organized before thawing MMa-bm. It is recommended that MHMa are used for experiments as quickly as possible after thawing the cells. **MMa-bm cannot be subcultured or passaged, as the cells do not proliferate.**

Initiating the culture:

1. Prepare a poly-L-lysine-coated culture plate (2 μg/cm² is recommended). For example, add 2 ml of sterile water to one well of a 6-well plate and then add 20μl of poly-L-lysine stock solution (1 mg/ml, Cat. #0403). Leave the plate in a 37°C incubator overnight (or for a minimum of one hour).

2. Prepare complete medium (MaM, Cat. #1921). Thaw MaGS (Cat. #1972), FBS (Cat. #0025) and P/S solution (Cat. #0503) at 37°C. Gently tilt the MaGS tube several times to ensure the contents are completely dissolved before adding to the medium. Decontaminate the external surfaces of medium bottle and medium supplement tubes with 70% ethanol and transfer them to a sterile field. In a sterile field, remove the cap, being careful not to touch the interior threads with fingers. Add MaGS, FBS and P/S solution to the medium and mix well.

3. Rinse the poly-L-lysine-coated vessel twice with sterile water and then add the volume of complete medium recommended in Table 1 or Table 2. Leave the plate(s) in the sterile field and proceed to thaw the cryopreserved cells.

4. Place the frozen vial in a 37°C water bath. Hold and rotate the vial gently until the contents completely thaw. Promptly remove the vial from the water bath, wipe it down with 70% ethanol, and transfer it to the sterile field.

Note: Dilution and centrifugation of cells after thawing are not recommended since these actions are more harmful to the cells than the effect of residual DMSO in the culture. It is also important that cells are plated in poly-L-lysine-coated culture vessels to promote cell attachment.

5. Carefully remove the cap without touching the interior threads and gently resuspend the cell suspension. A seeding density of 10,000-20,000 cells/cm² is recommended depending on your experiments. We recommend following Table 1 for seeding MMa-bm onto 6-well, 12-well, or 24-well plates. For seeding MMa-bm on 60 mm plates, use Table 2.

Table 1
Recommended cell suspension volume per vial using a 6-well, 12-well, or 24 well format

<table>
<thead>
<tr>
<th>Well format</th>
<th>Surface area/well (approx. values)</th>
<th>Volume of media/well</th>
<th>Volume of cell suspension from vial/well</th>
<th># of wells/vial</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-well</td>
<td>9.6 cm²</td>
<td>3.0 ml</td>
<td>150 μl</td>
<td>6 wells</td>
</tr>
<tr>
<td>12-well</td>
<td>3.9 cm²</td>
<td>2.0 ml</td>
<td>60 μl</td>
<td>15 wells</td>
</tr>
<tr>
<td>24-well</td>
<td>1.9 cm²</td>
<td>1.0 ml</td>
<td>30 μl</td>
<td>30 wells</td>
</tr>
</tbody>
</table>
Table 2
Recommended cell suspension volume per vial using 60 mm plates

<table>
<thead>
<tr>
<th>Plate Format</th>
<th>Surface area/plate (approx. values)</th>
<th>Volume of cell suspension from vial/plate</th>
<th># of plates/vial</th>
<th>Volume of media (ml)/plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 mm</td>
<td>21 cm²</td>
<td>300 µl</td>
<td>3</td>
<td>3.0 ml</td>
</tr>
</tbody>
</table>

6. Pipet the correct volume of cell suspension into each well of an equilibrated, poly-L-lysine-coated culture plate containing complete medium. Replace the lid of the culture plate and gently rock the plate to distribute the cells evenly.

7. Return the culture plate to the incubator.

8. For best results, do not disturb the culture for at least 16 hours after the culture has been initiated. Change the culture medium the next morning after establishing a culture from cryopreserved cells to remove residual DMSO and unattached cells. Once macrophages attach, the culture is ready for experiment.

9. Use cells promptly for experiments.

Caution: Handling animal derived products is potentially biohazardous. Always wear gloves and safety glasses when working with these materials. Never mouth pipette. We recommend following the universal procedures for handling products of human origin as the minimum precaution against contamination [1].